

Quiz 3

Follow Lecture X and create your Amazon Braket Account!
If you already have an AWS account please send it over the chat, if not send us an email that you would like to use to register to it.

Besides, go and create a free account for D-Wave https://cloud.dwavesys.com/leap/

And for IBM Quantum Experience https://quantum-computing.ibm.com/login

Agenda

- QUBO Definition
- QUBO - Ising Model Mapping
- QUBO - Integer Programming model
- QUBO: Binarization
- QUBO: Unconstraining
- QUBO: Quadratization
- Integer Programming as QUBO
- Coloring Example
- Integer Factorization

Carnegie Mellon University
Tepper School of Business

QUBO model

Quadratic Unconstrained Binary Optimization

$$
\begin{aligned}
& \min _{\mathbf{x} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} x_{i} Q_{i j} x_{j}+\sum_{i \in V(G)} Q_{i i} x_{i}+c \\
& =\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+c
\end{aligned}
$$

Quadratic coefficient matrix \mathbf{Q}

- Can be either upper triangular or complete $x_{i} x_{j}=x_{j} x_{i}$
- Elements on diagonal can be linearized $x_{i}^{2}=x_{i}$ if $x_{i} \in\{0,1\}$
o Represents adjacency matrix of a problem
Offset \boldsymbol{C}
- Irrelevant for optimization

In terms of IP it would be a
(possible non-convex if $\mathbf{Q} \nsucceq 0$)
Integer Nonlinear Program
Carnegie Mellon University
Tepper School of Business

QUBO - Ising Mapping

1-to-1 mapping between QUBO and Ising models using spin-binary bijection

$$
\begin{aligned}
& \sigma_{i}=2 x_{i}-1 \\
& \sigma_{i} \sigma_{j}=4 x_{i} x_{j}-2 x_{i}-x_{j}+1
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& x_{i}=\left(\sigma_{i}+1\right) / 2 \\
& x_{i} x_{j}=\left(\sigma_{i} \sigma_{j}+\sigma_{i}+\sigma_{j}+1\right) / 4
\end{aligned}
$$

$$
\min _{\sigma \in\{-1,+1\}^{n}} \sum_{(i j) \in E(G)} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i \in V(G)} h_{i} \sigma_{i}+c_{I}=
$$

$$
\min _{\mathbf{x} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} x_{i} Q_{i j} x_{j}+\sum_{i \in V(G)} Q_{i i} x_{i}+c_{Q}
$$

$$
Q_{i j}=4 J_{i j}, Q_{i i}=2 h_{i}-\sum_{j \in V(G)}\left(2 J_{i j}+2 J_{j i}\right), c_{I}=c_{Q}+\sum_{i<j} J_{i j}-\sum_{i \in V(G)} h_{i}
$$

$$
\begin{aligned}
& \min _{\mathbf{x} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} x_{i} Q_{i j} x_{j}+\sum_{i \in V(G)} Q_{i i} x_{i}+c_{Q}= \\
& \min _{\sigma \in\{-1,+1\}^{n}} \sum_{(i j) \in E(G)} J_{i j} \sigma_{i} \sigma_{j}+\sum_{i \in V(G)} h_{i} \sigma_{i}+c_{I}
\end{aligned}
$$

$$
J_{i j}=Q_{i j} / 4, h_{i}=Q_{i i} / 2+\sum_{j \in V(G)}\left(Q_{i j} / 4+Q_{j i} / 4\right), c_{I}=c_{Q}+\sum_{i<j} Q_{i j} / 4-\sum_{i \in V(G)} Q_{i i} / 2
$$

Carnegie Mellon University
Tepper School of Business

QUBO as Integer Programs

$$
\begin{aligned}
& \min _{\mathbf{x} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} x_{i} Q_{i j} x_{j}+\sum_{i \in V(G)} Q_{i i} x_{i}+c \\
& =\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+c
\end{aligned}
$$

Although this is already solvable using INLP programming tools, we can reformulate it as a ILP by adding a variable $x_{i j}=x_{i} x_{j}$ whose nonlinearity can be posed a linear inequalities.
Experimental results show this is the most efficient ILP formulation of the Ising problem

$$
\begin{aligned}
& \min _{\mathbf{x} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} Q_{i j} x_{i j}+\sum_{i \in V(G)} Q_{i i} x_{i}+c \\
& \text { s.t. } x_{i j} \geq x_{i}+x_{j}-1, x_{i j} \leq x_{i}, x_{i j} \leq x_{j} \quad \forall(i j) \in E(G) \\
& x_{i} \in\{0,1\} \quad \forall i \in V(G), x_{i j} \in\{0,1\} \quad \forall(i j) \in E(G)
\end{aligned}
$$

QUBO - Binarization

How to transform general Integer Programs into Binary programs?

$$
y \in\{0, \cdots, \bar{y}\} \subseteq \mathbb{Z}
$$

In general with a width of the integer encoding d

$$
y=\sum_{j=1}^{d} k_{j} x_{j}=\mathbf{k}^{\top} \mathbf{x}, k_{j} \in \mathbb{Z}_{+}, x_{j} \in\{0,1\}
$$

- Unary encoding

$$
k_{j}=1, d=\bar{y}
$$

- Binary encoding $k_{j}=2^{j-1}, d=\left\lfloor\log _{2}(\bar{y})\right\rfloor$
- Bounded encoding

We can find an encoding with an upper bound for the coefficients $\mu \ll \bar{y}$

$$
\begin{aligned}
& \text { if } \bar{y}<2^{\lfloor\log (\mu)\rfloor}+1 \quad \text { if } \bar{y}>2^{\lfloor\log (\mu)\rfloor}+1 \\
& \mathbf{k}=\left[2^{0}, 2^{1}, \ldots, 2^{\lfloor\log (\bar{y})\rfloor-1}, \bar{y}-\sum_{i=1}^{\lfloor\log (\bar{y})\rfloor} 2^{i-1}\right] \\
& \rho=\lfloor\log \mu\rfloor+1, v=\bar{y}-\sum_{i=1}^{\rho} 2^{i-1} \text {, and } \eta=\left\lfloor\frac{v}{\mu}\right\rfloor \\
& k_{i}= \begin{cases}2^{i-1} & \text { for } i=1, \ldots, \rho \\
\mu & \text { for } i=\rho+1, \ldots, \rho+\eta \\
v-\eta \mu & \text { for } i=\rho+\eta+1 \text { if } v-\eta \mu\end{cases} \\
& \text { Carnegie Mellon University }
\end{aligned}
$$ Tepper School of Business

QUBO - Binarization

$\mu \ll \bar{y}$ upper bound can be computed from the problem matrix and the resolution of the quadratic and linear terms in the machine

(a) The scaling of success probability as a function of the standard deviation of noise. The success probability θ is reported averaged over the 128 UIQP instances of each noise parameter. The shaded stripe indicates the 50 th percentile.

(b) The scaling of TTS as a function of the standard deviation of noise. Instances for which the optimal solution is never observed are ignored and the curves are discontinued if more than 15% of instances are never solved.

Carnegie Mellon University

 Tepper School of Business
QUBO - Pseudo-Boolean functions and Quadratization

Any pseudo-Boolean function defined as

$$
f:\{0,1\}^{n} \mapsto \mathbb{R}
$$

Can be written uniquely as a sum of multilinear functions

$$
f(x)=a_{0}+\sum_{i} a_{i} x_{i}+\sum_{i j} a_{i j} x_{i} x_{j}+\sum_{i j k} a_{i j k} x_{i} x_{j} x_{k}+\ldots
$$

We can transform any binary polynomial into a quadratic polynomial by introducing new variables as we saw before Naive example: $x_{i j}=x_{i} x_{j}$

- Using linear inequalities

$$
x_{i j} \geq x_{i}+x_{j}-1, x_{i j} \leq x_{i}, x_{i j} \leq x_{j}
$$

- Using a polynomial expression

$$
H(\mathbf{x})=3 x_{i j}+x_{i} x_{j}-2 x_{i j} x_{i}-2 x_{i j} x_{j}
$$

- Graph:

Usually called ancillary variables

Carnegie Mellon University

\mathscr{X}_{i}	\boldsymbol{x}_{j}	$x_{i j}$	$\mathscr{X}_{i} \mathscr{X}_{j} H(\mathbf{x})$	
1	1	1	1	0
1	1	0	1	1
1	0	1	0	1
1	0	0	0	0
0	1	1	0	1
0	1	0	0	0
0	0	1	0	3
0	0	0	0	0

QUBO - Quadratization and logical functions

We can follow the previous reduction to obtain a Quadratically constrained program from any arbitrary problem.
There are many clever way of "Quadratizing" problems [1]

- Cubic

(a) Propeller
(b) Coat Hanger
(c) $K_{4}-e$

(d) K_{4}

(e) $K_{5}(2 a u x)$
- Quartic

(h) $K_{6}-4 e$

(i) $K_{6}-e$

(j) K_{6}

Logical gates
AND: $x_{i} \wedge x_{j}=x_{i} x_{j}=x_{i j} \mapsto 3 x_{i j}+x_{i} x_{j}-2 x_{i j} x_{i}-2 x_{i j} x_{j}$
OR: $\quad x_{i} \vee x_{j}=x_{i}+x_{j}-x_{i} x_{j}=x_{i}+x_{j}-x_{i j} \mapsto x_{i}+x_{j}-3 x_{i j}-x_{i} x_{j}+2 x_{i j} x_{i}+2 x_{i j} x_{j}$
NOT: $\neg x=y \mapsto 2 x y-x-y$

Carnegie Mellon University
Tepper School of Business

QUBO - Unconstraining

Lagrange Multipliers

For LP problems we had

$$
\begin{aligned}
& \min _{\mathbf{x} \geq 0} \mathbf{c}^{\top} \mathbf{x} \\
& \text { s.t. } \mathbf{A x}=\mathbf{b}
\end{aligned}
$$

$$
\Longleftrightarrow \min _{\mathbf{x} \geq 0} \mathbf{c}^{\top} \mathbf{x}+\lambda^{\top}(\mathbf{b}-\mathbf{A} \mathbf{x})
$$

Where determining the multipliers can be written as and where the following holds:

$$
\begin{array}{r}
\max _{\lambda} \mathcal{L}(\lambda)=\max _{\lambda} \lambda^{\top} \mathbf{b} \\
\text { s.t. } \lambda^{\top} \mathbf{A} \leq \mathbf{c}^{\top}
\end{array}
$$

Strong duality: $\lambda^{* \top} \mathbf{b}=\mathbf{c}^{\top} \mathbf{x}^{*}$
For IP problems, strong duality does not hold, but we can still use the multipliers to convert the problem into unconstrained

$$
\begin{gathered}
\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{c}^{\top} \mathbf{x} \\
\text { s.t. } g(\mathbf{x}) \leq 0 \quad(\lambda) \\
h(\mathbf{x})=0 \quad(\rho)
\end{gathered}
$$

$$
\begin{aligned}
& \min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{c}^{\top} \mathbf{x}+\lambda^{\top} g(\mathbf{x})+\rho^{\top} h(\mathbf{x}) \\
& \text { where } \lambda_{i}^{\top} \geq 0
\end{aligned}
$$

QUBO - Unconstraining

We can transform any arbitrary constraint in terms of binaries into multilinear, and then quadratize them.
We can then transform inequalities into equalities by introducing slack variables, which by scaling the constraints become integers
FInally we can binarize these slacks

$$
\begin{array}{ccc}
\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{c}^{\top} \mathbf{x} & \min _{\mathbf{y} \in\{0,1\}^{n}} \mathbf{d}^{\top} \mathbf{y} \\
\text { s.t. } g(\mathbf{x}) \leq 0 \\
h(\mathbf{x})=0
\end{array} \Longleftrightarrow \begin{gathered}
\min _{\mathbf{y} \in\{0,1\}^{n}, \mathbf{s} \in \mathbb{Z}_{\mathbf{d}}} \mathbf{d}^{\top} \mathbf{y} \\
\text { s.t. } \mathbf{y}^{\top} G \mathbf{y} \leq 0 \\
\mathbf{y}^{\top} H \mathbf{y}=0 \quad(\lambda)
\end{gathered} \Longleftrightarrow \begin{aligned}
& \text { s.t. } \mathbf{y}^{\top} G \mathbf{y}+\mathbf{s}=0 \\
& \mathbf{y}^{\top} H \mathbf{y}=0 \quad(\rho)
\end{aligned}
$$

Considering that we can only deal with discrete variable in QUBO, we cannot change the value of the multipliers.
o Set the multipliers to be constant penalty factor!

- Example: Integer linear inequalities become penalties by "squaring" them
$\min _{\mathbf{x} \in \mathbb{Z}_{+}} \mathbf{c}^{\top} \mathbf{x} \Longleftrightarrow \min _{\mathbf{x} \in \mathbb{Z}_{+}, \mathbf{s} \in \mathbb{Z}_{+}} \mathbf{c}^{\top} \mathbf{x}+\rho^{\top}(\mathbf{A} \mathbf{x}+\mathbf{s}-\mathbf{b})^{\top}(\mathbf{A x}+\mathbf{s}-\mathbf{b})$
s.t. $\mathbf{A x} \leq \mathbf{b}$

QUBO - Unconstraining

Penalty factor

In general, we represent the constrained problem with a feasible region

$$
F=\bigcap_{j} F_{j}=\bigcap_{j}\left\{\mathbf{x} \in\{0,1\}^{n}: g_{j}(\mathbf{x}) \leq 0\right\}
$$

We are mapping it into a QUBO problem

$$
\min _{\mathbf{y} \in\{0,1\}^{n}} \sum_{(i j) \in E(G)} y_{i} Q_{i j} y_{j}+\sum_{i \in V(G)} Q_{i i} y_{i}+c_{Q}
$$

Where the \mathbf{y} variables include both the original variables \mathbf{X} and ancillas \mathbf{a}
The penalization factor for each constraint should read

$$
\min _{\mathbf{a}} \operatorname{Pen}_{F_{j}}(\mathbf{x}, \mathbf{a})\left\{\begin{array}{l}
=0 \text { if } \mathbf{x} \in F_{j} \\
\geq g \text { if } \mathbf{x} \notin F_{j}
\end{array}\right.
$$

Where $g>0$ is the gap between feasible and infeasible solutions.
Therefore we could in general find

$$
\begin{aligned}
& \max _{g, Q, c_{Q}} g \\
& \text { s.t. } \mathbf{y}^{\top} Q \mathbf{y}+c_{Q} \geq 0 \quad \forall \mathbf{x} \in F, \forall \mathbf{a} \\
& \mathbf{y}^{\top} Q \mathbf{y}+c_{Q} \geq g \quad \forall \mathbf{x} \notin F, \forall \mathbf{a} \\
& \quad \exists \mathbf{a}: \mathbf{y}^{\top} Q \mathbf{y}+c_{Q}=0 \quad \forall \mathbf{x} \in F \\
& \underline{Q} \leq Q \leq \bar{Q}, c_{Q} \leq c_{Q} \leq \overline{c_{Q}}
\end{aligned}
$$

QUBO - Examples

Binary Linear Programming

$$
\min _{\mathbf{x} \in\{0,1\}^{n}} \mathbf{c}^{\top} \mathbf{x}
$$

s.t. $\mathbf{A x}=\mathbf{b}$

We can write the energy function in two terms $H=H_{A}+H_{B}$

- Constraint satisfaction $\left(H_{A}=0\right)$

$$
H_{A}=\rho \sum_{j=1}^{m}\left(\sum_{i=1}^{n} A_{i j} x_{i}-b_{j}\right)^{2}
$$

- Objective function

$$
H_{B}=\sum_{i=1}^{n} c_{i} x_{i}
$$

How to determine the penalty? Guarantee that the minimal change in infeasibility is larger than the maximal case in objective

$$
\rho \geq \frac{\Delta H_{B}^{\max }}{\Delta H_{A}^{\min }} \quad \begin{aligned}
& \Delta H_{B}^{\max }=\sum_{i=1}^{n} \max \left\{c_{i}, 0\right\} \\
& \Delta H_{A}^{\min }=\min _{\sigma_{i} \in\{0,1\}, j}\left(\max \left[1, \frac{1}{2} \sum_{i=1}^{n}(-1)^{\sigma_{i}} A_{i j}\right]\right)
\end{aligned}
$$

It can be tightened by using properties of the constraints!

Putting it all together

Transforming IP into QUBO
 Let's go to the code

https://colab.research.google.com/github/bern alde/QuIP/blob/master/notebooks/Notebook\%2 05\%20-\%20QUBO.ipynb

QUBO - Examples

Coloring with colors $K=\{1, \cdots, k\}$
Groebner basis polynomial

$$
\begin{aligned}
& \mathcal{S}=\left\{x_{i}^{|K|}=1, \forall i \in V\right. \\
& \left.x_{u}^{|K|}-x_{v}^{|K|}=0, \forall(u, v) \in E\right\}
\end{aligned}
$$

IP formulation (SAT) $\min _{\mathrm{x}} 1$

$$
\text { s.t. } \sum_{j \in K} x_{i j}=1, \forall i \in V
$$

$$
x_{u j}+x_{v j} \leq 1, \forall j \in K, \forall(u, v) \in E
$$

$$
\mathcal{G}(V, E)=
$$

$x_{i j} \in\{0,1\}, \forall j \in K, \forall i \in V$

QUBO Formulation

$$
\begin{aligned}
& \min _{\mathbf{x}} \sum_{i \in V}\left(1-\sum_{j \in K} x_{i j}\right)^{2}+\sum_{(u v) \in E} \sum_{j \in K} x_{u j} x_{v j} \\
& \quad x_{i j} \in\{0,1\}, \forall j \in K, \forall i \in V
\end{aligned}
$$

Carnegie Mellon University
Tepper School of Business

QUBO for coloring initial graph

with 3 colors
https://colab.research.google.com/github/bern alde/QuIP/blob/master/notebooks/Notebook\%2 05\%20-\%20QUBO.ipynb

Algebraic geometry

Reduction to QUBOs without slack variables

Consider the quadratic polynomial

$$
H_{i j}:=Q_{i} P_{j}+S_{i, j}+Z_{i, j}-S_{i+1, j-1}-2 Z_{i, j+1},
$$

with the binary variables $P_{j}, Q_{i}, S_{i, j}, S_{i+1, j-1}, Z_{i, j}, Z_{i, j+1}$.

- The goal is solve $H_{i j}$ (obtain its zeros) as a QUBO (eg., using DWave)
- We can square $H_{i j}$ and reduce using slack variables !
- Or, instead, we compute a Groebner basis \mathcal{B} of the system

$$
\mathcal{S}=\left\{H_{i j}\right\} \cup\left\{x^{2}-x, x \in\left\{P_{j}, Q_{i}, S_{i, j}, S_{i+1, j-1}, Z_{i, j}, Z_{i, j+1}\right\}\right\}
$$

and look for a positive quadratic polynomial
$H_{i j}{ }^{+}=\sum_{t \in \mathcal{B} \mid \operatorname{deg}(t) \leq 2} a_{t} t$. Note that global minima of $H_{i j}{ }^{+}$ are the zeros of $H_{i j}$.

QuBO - OUG

Algebraic geometry

The Groebner basis \mathcal{B} is

$$
\begin{align*}
& t_{1}:=Q_{i} P_{j}+s_{i, j}+z_{i, j}-s_{i+1, j-1}-2 z_{i, j+1}, \tag{8}\\
& t_{2}:=\left(-z_{i, j+1}+z_{i, j}\right) s_{i+1, j-1}+\left(z_{i, j+1}-1\right) z_{i, j}, \tag{9}\\
& t_{3}:=\left(-z_{i, j+1}+z_{i, j}\right) s_{i, j}+z_{i, j+1}-z_{i, j+1} z_{i, j}, \tag{10}\\
& t_{4}:=\left(s_{i+1, j-1}+z_{i, j+1}-1\right) s_{i, j}-s_{i+1, j-1} z_{i, j+1}, \tag{11}\\
& t_{5}:=\left(-s_{i+1, j-1}-2 z_{i, j+1}+z_{i, j}+s_{i, j}\right) Q_{i}-s_{i, j}-z_{i, j}+s_{i+1, j-1}+2 z_{i, j+1}, \tag{12}\\
& t_{6}:=\left(-s_{i+1, j-1}-2 z_{i, j+1}+z_{i, j}+s_{i, j}\right) P_{j}-s_{i, j}-z_{i, j}+s_{i+1, j-1}+2 z_{i, j+1}, \tag{13}
\end{align*}
$$

in addition to 3 more cubic polynomials,
We take $H_{i j}^{+}=\sum_{t \in \mathcal{B} \mid \operatorname{deg}(t) \leq 2} a_{t} t$, and solve for the a_{t}. We can require that the coefficients a_{t} are subject to the dynamic range allowed by the quantum processor (eg., the absolute values of the coefficients of $H_{i j}^{+}$, with respect to the variables $P_{j}, Q_{i}, S_{i, j}, S_{i+1, j-1}, Z_{i, j}$, and $Z_{i, j+1}$, be within $[1-\epsilon, 1+\epsilon]$).
Carnegie Mellon University
Tepper School of Business

QuBO - OUG

scientific reports

Explore our content $\vee \quad$ Journal information \vee

nature > scientific reports > collection
COLLECTION | 11 OCTOBER 2019

Editor's choice: quantum computing

Quantum computers have developed enormously in the past decade, moving beyond theoretical calculations to real-world applications. Systems which use comparatively low numbers of qubits have been accessible to researchers for some time and, despite the inherent... show more

Quantum Annealing

Carnegie Mellon University Tepper School of Business

Integer Factorization by Raouf and Hedayat

Initial code

https://colab.research.google.com/github/bern alde/QuIP/blob/master/notebooks/Notebook\%2 05\%20-\%20QUBO.ipynb

